

- 1. What variables or unknowns are involved?
- 2. What quantity is to be maximized or minimized and how do I express that quantity in terms of my unknowns?
- 3. What constraints do I have? How can I express those constraints in terms of my unknowns? (In linear programming problems, this step results in a set of linear inequalities.)

Example - potter making cups and plates

A potter is making cups and plates. It takes her 6 minutes to make a cup and 3 minutes to make a plate. Each cup uses 3/4 lb. of clay and each plate uses one lb. of clay. She has 20 hours available for making the cups and plates and has 250 lbs. of clay on hand. She makes a profit of \$2 on each cup and \$1.50 on each plate. How many cups and how many plates should she make in order to maximize her profit?

x = number of cups the potter makesy = number of plates the potter makes

Example - potter making cups and plates

A potter is making cups and plates. It takes her 6 minutes to make a cup and 3 minutes to make a plate. Each cup uses 3/4 lb. of clay and each plate uses one lb. of clay. She has 20 hours available for making the cups and plates and has 250 lbs. of clay on hand. She makes a profit of \$2 on each cup and \$1.50 on each plate. How many cups and how many plates should she make in order to maximize her profit?

x = number of cups the potter makesy = number of plates the potter makes

P = (\$2/cup)(x cups) + (\$1.50/plate)(y plates),so P = \$2x + \$1.50y x = number of cups the potter makesy = number of plates the potter makes

P = (\$2/cup)(x cups) + (\$1.50/plate)(y plates),so P = \$2x + \$1.50y

Time constraint:

time on cups + time on plates \leq time available

Example - potter making cups and plates

A potter is making cups and plates. It takes her 6 minutes to make a cup and 3 minutes to make a plate. Each cup uses 3/4 lb. of clay and each plate uses one Ib. of clay. She has 20 hours available for making the cups and plates and has 250 lbs. of clay on hand. She makes a profit of \$2 on each cup and \$1.50 on each plate. How many cups and how many plates should she make in order to maximize her profit?

- x = number of cups the potter makesy = number of plates the potter makes
 - P = (\$2/cup)(x cups) + (\$1.50/plate)(y plates),so P = \$2x + \$1.50y

Time constraint:

time on cups + time on plates \leq time available (6 min./cup)(x cups) + (3min./plate)(y plates) \leq (20 hrs.)(60 min./hr.) or $6x + 3y \leq 1200$

x = number of cups the potter makes y = number of plates the potter makes

P = (\$2/cup)(x cups) + (\$1.50/plate)(y plates),so P = \$2x + \$1.50y

Time constraint:

time on cups + time on plates \leq time available (6 min./cup)(x cups) + (3min./plate)(y plates) \leq (20 hrs.)(60 min./hr.) or $6x + 3y \leq 1200$

Clay constraint: clay for cups + clay for plates \leq clay available

Example - potter making cups and plates

A potter is making cups and plates. It takes her 6 minutes to make a cup and 3 minutes to make a plate. Each cup uses 3/4 lb. of clay and each plate uses one **Ib.** of clay. She has 20 hours available for making the cups and plates and has 250 lbs. of clay on hand. She makes a profit of \$2 on each cup and \$1.50 on each plate. How many cups and how many plates should she make in order to maximize her profit?

x = number of cups the potter makes

y = number of plates the potter makes

P = (\$2/cup)(x cups) + (\$1.50/plate)(y plates),so P = \$2x + \$1.50y

Time constraint:

time on cups + time on plates \leq time available (6 min./cup)(x cups) + (3min./plate)(y plates) \leq (20 hrs.)(60 min./hr.) or

$$6x + 3y \le 1200$$

Clay constraint:

clay for cups + clay for plates \leq clay available (3/4 lb. of clay/cup)(x cups) + (1 lb. of clay/plate)(x plates) < 250 lbs. of clay

(1 lb. of clay/plate)(y plates) \leq 250 lbs. of clay .75x + y \leq 250

x = number of cups the potter makes

- y = number of plates the potter makes
 - P = (\$2/cup)(x cups) + (\$1.50/plate)(y plates),
 - so P = \$2x + \$1.50y

Time constraint:

time on cups + time on plates \leq time available (6 min./cup)(x cups) + (3min./plate)(y plates) \leq (20 hrs.)(60 min./hr.) or

 $6x + 3y \le 1200$

Clay constraint:

clay for cups + clay for plates \leq clay available (3/4 lb. of clay/cup)(x cups) +

(1 lb. of clay/plate)(y plates) \leq 250 lbs. of clay .75x + y \leq 250

Non-negative constraints: $x \ge 0, y \ge 0$

Summary: x = number of cups the potter makes y = number of plates the potter makes

The potter wants to maximize profit P = \$2x + \$1.50y

```
Constraints:

\begin{array}{l} 6x + 3y \leq 1200 \\ .75x + y \leq 250 \\ x \geq 0 \\ y \geq 0 \end{array}
```

- What variables or unknowns are involved?
- 2. What quantity is to be maximized or minimized and how do I express that quantity in terms of my unknowns?
- What constraints do I have? How can I express those constraints in terms of my unknowns? (In linear programming problems, this step results in a set of linear inequalities.)

Farmer planting corn and soybeans

A farmer has a 320 acre farm on which she plants two crops: corn and soybeans. For each acre of corn planted, her expenses are \$50 and for each acre of soybeans planted, her expenses are \$100. Each acre of corn requires 100 bushels of storage and yields a profit of \$60; each acre of soybeans requires 40 bushels of storage and yields a profit of \$90. If the total amount of storage space available is 19,200 bushels and the farmer has only \$20,000 on hand, how many acres of each crop should she plant in order to maximize her profit? What will her profit be if she follows this strategy?

Farmer planting corn and soybeans

A farmer has a 320 acre farm on which she plants two crops: corn and soybeans. For each acre of corn planted, her expenses are \$50 and for each acre of soybeans planted, her expenses are \$100. Each acre of corn requires 100 bushels of storage and yields a profit of \$60; each acre of soybeans requires 40 bushels of storage and yields a profit of \$90. If the total amount of storage space available is 19,200 bushels and the farmer has only \$20,000 on hand, how many acres of each crop should she plant in order to maximize her profit? What will her profit be if she follows this strategy?

$$x = #$$
 acres of corn

y = # acres of soybeans

x = # acres of corn y = # acres of soybeans

Maximize P = 60x + 90y

Farmer planting corn and soybeans

A farmer has a 320 acre farm on which she plants two crops: corn and soybeans. For each acre of corn planted, her expenses are \$50 and for each acre of soybeans planted, her expenses are \$100. Each acre of corn requires 100 bushels of storage and yields a profit of \$60; each acre of soybeans requires 40 bushels of storage and yields a profit of \$90. If the total amount of storage space available is 19,200 bushels and the farmer has only \$20,000 on hand, how many acres of each crop should she plant in order to maximize her profit? What will her profit be if she follows this strategy?

$$x = #$$
 acres of corn

x = # acres of corn y = # acres of soybeans Maximize P = 60x + 90yland constraint: x + y ≤ 320

Farmer planting corn and soybeans

A farmer has a 320 acre farm on which she plants two crops: corn and soybeans. For each acre of corn planted, her expenses are \$50 and for each acre of soybeans planted, her expenses are \$100. Each acre of corn requires 100 bushels of storage and yields a profit of \$60; each acre of soybeans requires 40 bushels of storage and yields a profit of \$90. If the total amount of storage space available is 19,200 bushels and the farmer has only \$20,000 on hand, how many acres of each crop should she plant in order to maximize her profit? What will her profit be if she follows this strategy?

$$x = #$$
 acres of corn

x = # acres of corn y = # acres of soybeans Maximize P = 60x + 90yland constraint: x + y ≤ 320 \$ constraint: 50x + 100y $\leq 20,000$

Farmer planting corn and soybeans

A farmer has a 320 acre farm on which she plants two crops: corn and soybeans. For each acre of corn planted, her expenses are \$50 and for each acre of soybeans planted, her expenses are \$100. Each acre of corn requires 100 bushels of storage and yields a profit of \$60; each acre of soybeans requires 40 bushels of storage and yields a profit of \$90. If the total amount of storage space available is 19,200 bushels and the farmer has only \$20,000 on hand, how many acres of each crop should she plant in order to maximize her profit? What will her profit be if she follows this strategy?

$$x = #$$
 acres of corn

y = # acres of soybeans

x = # acres of corn y = # acres of soybeans

Maximize P = 60x + 90y

land constraint: $x + y \le 320$ \$ constraint: $50x + 100y \le 20,000$ storage constraint: $100x + 40y \le 19,200$ x = # acres of corn y = # acres of sources

y = # acres of soybeans

Maximize P = 60x + 90y

land constraint: $x + y \le 320$ \$ constraint: $50x + 100y \le 20,000$ storage constraint: $100x + 40y \le 19,200$ non-negative constraints: $x \ge 0, y \ge 0$

Example - Aluminum and Copper Wire

A plant makes aluminum and copper wire. Each pound of aluminum wire requires 5 kwh of electricity and 1/4 hr. of labor. Each pound of copper wire requires 2 kwh of electricity and 1/2hr. of labor. Production of copper wire is restricted by the fact that raw materials are available to produce at most 60 lbs./day. Electricity is limited to 500 kwh/day and labor to 40 person-hrs./day. If the profit from aluminum wire is \$.25/lb. and the profit from copper is \$.40/lb., how much of each should be produced to maximize profit and what is the maximum profit?

x = number of lbs. of aluminum wire y = number of lbs. of copper wire

Example - Aluminum and Copper Wire

A plant makes aluminum and copper wire. Each pound of aluminum wire requires 5 kwh of electricity and 1/4 hr. of labor. Each pound of copper wire requires 2 kwh of electricity and 1/2 hr. of labor. Production of copper wire is restricted by the fact that raw materials are available to produce at most 60 lbs./day. Electricity is limited to 500 kwh/day and labor to 40 person-hrs./day. If the profit from aluminum wire is \$.25/lb. and the profit from copper is \$.40/lb., how much of each should be produced to maximize profit and what is the maximum profit?

Example - Aluminum and Copper Wire

A plant makes aluminum and copper wire. Each pound of aluminum wire requires 5 kwh of electricity and 1/4 hr. of labor. Each pound of copper wire requires 2 kwh of electricity and 1/2hr. of labor. Production of copper wire is restricted by the fact that raw materials are available to produce at most 60 lbs./day. Electricity is limited to 500 kwh/day and labor to 40 person-hrs./day. If the profit from aluminum wire is \$.25/lb. and the profit from copper is \$.40/lb., how much of each should be produced to maximize profit and what is the maximum profit?

> Constraints: $y \le 60$

Constraints: $y \le 60$ $5x + 2y \le 500$

> Constraints: $y \le 60$ $5x + 2y \le 500$ $.25x + .5y \le 40$

> Constraints: $y \le 60$ $5x + 2y \le 500$ $.25x + .5y \le 40$ $x \ge 0$ $y \ge 0$

Sofa Factories

A company makes two types of sofas, regular and long, at two locations, one in Hickory and one in Lenoir. The plant in Hickory has a daily operating budget of \$45,000 and can produce at most 300 sofas daily in any combination. It costs \$150 to make a regular sofa and \$200 to make a long sofa at the Hickory plant. The Lenoir plant has a daily operating budget of \$36,000, can produce at most 250 sofas daily in any combination and makes a regular sofa for \$135 and a long sofa for \$180. The company wants to limit production to a maximum of 250 regular sofas and 350 long sofas each day. If the company makes a profit of \$50 on each regular sofa and \$70 on each long sofa, how many of each type should be made at each plant in order to maximize profit? What is the maximum profit?

Sofa Factories

x = regular sofas made in Hickory
y = long sofas made in Hickory
z = regular sofas made in Lenoir
w = long sofas made in Lenoir

\$ constraint at Hickory: $150x + 200y \le 45,000$ Hickory sofa limit: $x + y \le 300$ \$ constraint at Lenoir: $135z + 180w \le 36,000$ Lenoir sofa limit: $z + w \le 250$ regular sofa limit: $x + z \le 250$ long sofa limit: $y + w \le 350$ non-neg: $x \ge 0, y \ge 0, z \ge 0, w \ge 0$

Maximize profit P = 50x + 70y + 50z + 70w